AN ANALYSIS OF A DIGHAL SAMPLSD DIIA SERYOMECIAMSU AND THE DESGG OF I SWICCHMG MEUCQ POR WUL HODE OPDRMTOX

LAWRENCE T. BLADES

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943-5101

LIORARY
U.S. NAVAL POSTCR.NDUTE SCHOOL

MONTEREY, CALIFORNJA

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943-5101

AN ANALYSIS OF A DIGITAL SAMPLED DATA SERVONECHANISM
AND THE
DESIGN OF A SWITCHING DEVICE FOR DUAL MODE OPERATION

* * * * *

Lawrence T. Blades

AN ANALYSIS OF A DIGITAL SAMPLED DATA SERVOMECHANISM AND THE

DESIGN OF A SWITCHING DEVICE FOR DUAL MODE OPERATION

by
Lawrence T. Blades Lieutenant, United States Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN
ELECTRICAL ENGINEERING

United States Naval Fostgraduate School
Monterey, California
1959

Thesis
NPS ARCAINE
135458
1959

$$
\text { BCADE: } C
$$

AN ANALYSIS OF A DIGITAL SAMPLED DATA SERVOMECHANISM AND THE

DESIGN OF A SWITCHING DEVICE FOR DUAL MODE OPERATICN by

Lawrence T. Blades

This work is accepted as fulfilling the thesis requirements for the deqree of

- master of science
IN
ELECTRICAL ENGINEERING
from the
United States Naval Posteraduate School

ABSTRACT

DiEital automatic control systems operating on sampled data have become more widely used in recent years to take advantage of the versatility and accuracy of digital computers, and new servomechanism compensation techniques utilizing digital devices are being developed for use in these systems. The present paper is an analysis of a particular digital control system, its response to large step inputs which cause plant saturation, and the design of a simple switching device for dual mode operation which takes advantage of digital logic circuitry.

The author wishes to express his appreciation for the assistance given him by the engineers and techniciens of the Servomechanisms Section of Philco Corporation, Western Development Laboratories, Palo Alto, California where this work was carried on, in particular to Mr. Lynn J. Harvey, Mr. Joseph L. Heim, and Dr. Gene F. Franklin of Stanford University, a. Philco Consultant. He wishes to express his appreciation also for the assistance rendered him by Lieutenant Thomas C. Warren, U.S. Navy, and to Professor Georee J. Thaler, Dr. Ene., faculty advisor.

TABLE OF CONTENTS

Section Title Page
I INTRODUCTION 1
II GENERAL DESCRIPTION OF THE SERVOMECHANISY AND ITS MAJOR COMPONENT FARTS 3
2.1 Introduction 3
2.2 Baldwin Model A9SPI6, 16 Digit Photo- electric Analog-to-Digital Shaft Position Encoder 3
2.3 Translator 8
2.4 Norden Ketay Digital Comparator 9
2.5 Servo Amplifier 12
2.6 Servo Motor and Tachometer 14
III TESTING PROCEDURES AND RESULTS 17
3.1 Testing Procedures 17
3.2 Results ± 8
IV DERIVATION OF TRANSFER FUNCTIONS OF COMPONENTS 20
4.1 Introduction 20
4.2 Baldwin Encoder and Translator 20
4.3 Norden Ketay Digital Comparator 21
4.4 Servo Amplifier 23
4.5 Diehl Servomotor and Tachometer 25
4.6 Overall System 28
V MATHEMATICAL ANALYSIS OF SYSTEM AND COMFARISON WITH OBSERVED DATA 30
5.1 Introduction 30
5.2 Root Locus Analysis for System Without Rate Feedback 30
5.3 Root Locus Analysis of Rate Feedback Damped System 33
5.4 Transient Analysis of Rate Feedback Damped System 35
5.5 Discussion of Analysis and Observed Data 38
VI DUAL MODING FOR FAST RESFONSE TO LARGE INPUTS 43
6.1 Introduction 43
6.2 Phase Plane Analysis of a Continuous Data Approximation of the Rate Feediback Damped System 44
6.3 Phase Plane Analysis of Dual Mode System 49
6.4 Dual Mode Switching Device 52
VII CONCLUSIONS 57
BIBLIOGRAPHY 59
APPENDIX I. GRAY BINARY CODE 60

LIST OF ILLUSTRATIONS

Fieures Pace

1. Experimental Model of a Dieital Sampled Data Position Servomechanism 4
2. Functional Block Diacram of a Digitel Sampled Data Position Servo 5
3. Functional Diacram of Readout System of a Photo- electric Analog-to-DiEital Shaft Encoder 7
4. Functional Diagram of the Digital Comparator 10
5. Circuit Diaeram of the 60 cps , a-c Servo Amplifier 13
6. Characteristics of the Diehl FPE 25-86-1 a-c Low Inertia: Servo Motor with Integral d-c Tachometer 15
7. Experimental Servo Plant Consisting of Motor, Gear Train, and Shaft Encoder Load 16
8. Block Diagram Representation of Shaft Encoder and Translator Combination 21
9. Comparator Output Characteristics 22
10. Block Diagram Representation of Norden Ketay Digital Comparator 23
11. A Typical Servo Amplifier Saturation Character- 1stic 24
12. Block Diacram Representation of Servo Amplifier 25
13. Stall Toroue Characteristics of the Diehl FPE 25-86-1, Two Phase, 60cps Servomotor 27
14. Block Diagram Representation of Motor and Tacho- meter 28
15. Block Diagram Reprosentation of the Entire Servo System 29
16. Single Loop Block Diagram of the System 29
17. Root Locus of System Without Rate Feedback 32
18. Root Locus of Rate Feedback Damped System 36
19. Comparison of Theoretical and Actual Transient Responses 39
Figures Page
20. Continuous Data Approximation of the Stable Rate Feedback Damped System 45
21. Portion of Phase Plane with Trajectories of Actual and Continuous Data Approximation Systems 48
22. Portion of Phase Plane with a Trajectory of the Dual Mode Continuous Data Approximation System 51
23. Dual Mode Switching Circuit 54

LIST OF TABLES

Table Page
I Observed Plant Parameters for Satisfactorily Damped Rate Feedback System 34
II Numerical Values of Isoclines in Linear Region, $E<1.075 \times 10^{-3}$ Radians 47
III Numerical Values of Isoclines in Fully Saturated Refion, $E \geqslant 3.22 \times 10^{-3}$ Radians 47
IV Voltage Levels of Dual Moàe Switching Circuit Decision Function 53
V Pertinent Voltage Levels for Positive Step Inputs 54
VI Pertinent Voltage Levels for Negative Step Inputs 54

I INTRODUCTION

In recent years, with the advent of space satellites, there has been an increased emphasis on the development of extremely accurate positioning servomechenisms necessary in satellite tracking and directional telemetry receiving systems. A method of accomplishing this extreme accuracy involves the use of diEital servomechanisms employing analoe-to-digital shaft position encoders to gain the high positioning accuracy.

In a particular application under development at Philco Corporation, Westerm Development Laboratories, a positioning servomechanism uses a disc-type analoe-to-diEital converter capable of reading 2^{16} shaft positions or, stated another way, capable of resolution to one part in 65,536 . The particular converter being used is a photo-electric device using a flashing light source to activate photocells for digital readout, and as such, makes the servo a sampled data system. The system uses a digital input sienal from a digital computer, and uses a hydraulic power source.

During the period that the work of the present paper was undertaken by the author, June and July, 1959, the system was inherently velocity limited, and it was desired that further analysis of the system be made with a view to raising the maximum velocity obtainable if possible.

An experimental model of the servomechanism had been made,
employing, however, a two-phase, 60cycle a-c servomotor as a prime mover instead of the hydraulic plant, and the present investigation was carried out on this model system.

II GENERAL DESCRIPTION OF THE SERVOMECHANISN AND ITS MAJOR COMPONENT PARTS

2.1 Introduction

In Ficure 1 is shown the experimental model of the dicital sampled data servomechanism which was used in this investiEation. In Figure 2 is shown a functional block diagram of the model indicating the function each component plays in the servonechanism loop. The remainine articles in this section are brief physical descriptions of these component parts.
2.2 Baldwin, Model A9SPI6, 16 Digit Photoelectric Analog-toDiEital Sha.ft Position Encoder

Reference (I) contains a basic description of this device. This shaft position converter is a device which eives an indication of shaft position in digital form. Basically, it makes use of a disc divided into 16 concentric zones, each zone representing a binary digit. The least significant digit zone is at the periphery of the disc with more significant dieit zones displaced toward the center. The disc is made of elass, and each dieit zone or ring is divided into clear and opaque segments, the angular span of each seement beine determined by the significance of the digit represented by the ring. In particular, since this is a 16 diEit encoder, the disc "sees" 2^{16} or 65,536 positions per revolution. Thus, in the least sienificant zone of the disc there are 65,536 opaque and a like number of clear segments.

The coded disc is intesrally mounted to the shaft being encoded. Readout of position is performed by photocells,

Figure 1. Experimental Model of a Digital Sampled Data Position Servomechanism

Figure 2. Functional Block Diagram of a Digital Sampled Data Position Servo.
activated by a flashing licht. Figure 3 shows functionally how this is done. Then the lamp is triegered, licht passine through the code disc is read by a bank of radially positioned photocells, one for each ring on the code disc, that is, one for each digit. Clear sectors of the disc Eive a "I" output, while opaque sectors हive a "O" output. As the shaft rotates, the disc moves integrally with it, while the photocell bank and light source remain fixed as a reference, thus, the binary word output chances.

Since the light source flashes, it is this feature of the encoder which makes the system a sampled data system.

The codine of the disc is not done in true binary. If it were, amoiguities could occur principally because in a true binary counting sequence more than one digit changes at a time, and since the light source and photocells are of finite size, there could be large errors if several zones were changine instanteneously and all of them were not properly read by the photocells. For this reason the disc is encoded in "Gray" Binary Code, named for its inventor, Dr. Frank Gray, which minimizes ambiguities by allowine only one zone to chance condition at a time. A description of this code is contained in Appendix I.

Photocell outputs are sent to individual three-stage transistor amplifiers which convert the photocell current pulses into suitable output voltaces. This encoder is a socalled "parallel" converter because it transmits all 16 dielts simultaneously. Thus, from the encoder output through the

translator and into the dicital comparator of Ficure 2 there are 16 parallel electrical transmission links.

The encoder procrammer, shown in Ficure 1 and 2 supplies power and light source timine to the encoder. Durine this investication the light timine, or sampling rate, was set at 25 samples per second. This particular rate had been decided upon by the system desieners, taking into account time-sharing considerations outside of the system itself.

2.3 Translator

The function of this device is the translation of the Gray binary output of the encoder into a natural binary equivalent for input to the comparator. As explained in Appendix I, to convert a Gray binary number to its true binary equivalent, it is necessary to carry the most sienificant dieit unchanged, and then consecutively add diEits to the right, the true binary equivalent digit being the result of each addition, as shown by following the arrows in the example below:

Gray Number:

True Binary Number:

In the translator this is performed electrically as follows: Each of the diEit channels from the encoder feeds a separate transistor circuit board in the translator. The most significant dicit board has only a flip-filop circuit Which is trigeered by a pulse from the encoder and it gives
an output sienal of proper magnitude for transmission to the comparator. This output also coes to an "and" cate on the next most sienificant dieit board. All the remainine 15 dieft boards are identical and consist primarily of a flip-flop circuit and an "and" Eate circuit. Each flip-flop receives and "holds" its pulse from the encoder as in the most significant dieit case, but now, instead of the flip-flop output coine directly to the comparator, it is sent to the "and" eate where it is combined with the output signal of the previous board to produce the true binary diEit output to the comparator and to the cate circuit of the next board. On its way to the comparator, the output of each board also activates a licht on the front panel of the translator, shown in Fieure l, for output shaft position readine purposes.

The flip-flop circuits are re-set in time to hold the next incomine dicit by re-set pulses from the encoder procrammer as shown in Figure 2, these re-sets beine timed with the sampline pulses.
2.4 Norden-Ketay Dicital Comparator

The Norden-Ketay Diettal Comparator, shown in Fieures 1 and 2 , and described in reference (2), has as 1 ts purpose the comparison of two binary numbers and supplyine as an output an $a-c$, amplitude modulated sienal with amplitude and phase being proportional to the difference between the input vinary numbers.

Fieure 4 is a functional diaeram of the comparator. The function of the block marked "Logic Circuits" is to close

Figure 4. Function Diagram of the Digital Comparator.
combinations of transistor switches in the + and - "Current Generators", thus, producinc an a-c output voltage at the output windine of Tl proportional to the difference between the two input numbers. The current generators each consist of six transistors with collector load resistors so weighted that each more sienificant binary digit or "bit" produces twice as much current as the preceding bit. These two currents are then added in the primary of \mathbb{T}, which is also supplied with a. 115 volt, $60 \mathrm{cps}_{\mathrm{s}} \mathrm{a}-\mathrm{c}$ line voltage.

The details of the logic circuitry of the comparator are not pertinent to this report and will not be described, other than to say that the design uses "current" logic which is set up to establish a single current path throuch a number of possible paths. The transistors in the loeic section thus may be considered as open or closed switches. Of particular importance to this investigation is the fact that, in order to simplify the desien of the logic section, this comparator gives a true voltage analog output proportional to the difference between the two input binary numbers only up to a six dieit number from zero to 2^{5} or 32 bits. When the difference is greater than this the output is constant.

The entire comparator is built on a modular basis, usine semi-conductors mounted on etched plug-in boards exclusively. In addition to the 115 volt, $60 \mathrm{cps} a-c$ voltace, the device must be supplied with three d-c voltages: +2 volts, -11 volts, and -13 volts. The locical voltace levels used in the logic
section are:

$$
\begin{aligned}
-11 \text { volts } & =\text { "I" }=\text { true } \\
0 \text { volts } & =\text { "0" false } .
\end{aligned}
$$

2.5 Servo Amplifier

Figure 5 is the circuit diacram of the amplifier used in the model servomechanism. There are two inputs to the amplifier, the 60 cps , amplitude modulated voltage from the comparator output, and the d-c tachometer feedback voltage, as shown in Figure 2. The first two stages are a chopper amplifier where the d-c tachometer voltace is converted to a crude $60 \mathrm{cps} a-c$ by a mechanical chopper, activated by 60 cps line voltage, and this crude a-c is smoothed and amplified in the first two stages, V_{1} and V_{2}. Note that due to 165 K resistor on the chopper input, the d-c voltage from the tachometer is greatly attenuated; in practice, the maximum input was ± 20 millivolts. A potentiometer controls the level of the a-c tach voltage forwarded to the remaining stages of the amplifier. Further tach amplification is performed in V_{3} and V_{5}.

The comparator output signal comes into V 4 and $1 s$ further amplified in V_{6}. Summine of the two sienals is performed at the gain potentiometer. The remainine stages amplify the combined signal to produce a push-pull output to the motor control field windine. The .25 mfd capacitor across the output transformer produces the required 90 deqree phese shift for the motor control field voltage.

Figure 5. Circuit Diagram of the 60 cps, A-C Servo Amplifier
2.6 Servo Motor and Tachometer

Fieure 6 is a characteristic sheet for the Diehl
FPE 25-86-1, 60 cps a-c, two phase Low Inertia Servo Motor with an inteeral d-c Tachometer which was used in the model servomechanism. Little need be said here about this component since it is a standard component.

Ficure 7 is a deteil picture showine how this motortachometer was mounted in conjunction with the PIC Design Corporation $1800: 1$ speed reducer and the Baldwin encoder.

Pertinent Data:
$115 / 115 \mathrm{r}, 60$ Cycle, 2 Phase, 2 pole, 3.5 Watt Output Theoretical Acceleration @Stall $=10,750 \mathrm{rad} / \mathrm{sec}^{2}$ $W k^{2}($ Inertia $)=0.180 \mathrm{oz} \cdot$ in 2 D-C Tachometer Voltage $=6.5$ volts per 1000 rpm

Note: All information shown given by Dieh (Manufacturing Company
figure 6. Characteristics of the Diehl FPE 25-86-1 A-C Low Inertia Servo Motor with Integral D-C Tachometer.

Figure 7. Experimental Servo Plant Consisting of Motor, Gear Train, and Shaft Encoder Load

III TESTING FROCEDURES AND RESULTS

3.1 Testing Procedures

Since the Baldwin Encoder performs the function of a sampler in the system beine studied, 1t was necessary to set the proper sampling rate of 25 samples per second. This was done by settine the pulsing rate of the encoder proerammer Which pulses the strobotron light in the encoder at 25 pulses per seconã.

It was required.by the servo specificationsthat the static position error be no ereater than one bit, that is, one part in 65,536. Therefore, the amplifier Eain and rate feedback potentiometers were varied and step inputs were applied to the system by the upper switch panel of Fieure 1. Each switch, representing a binary diEit, sent a proper amplitude voltage to the input section of the comparator. The output position of the encoder shaft registered in true binary on the light panel of the translator, shown in Figure 1. For zero position error, the translator light conficuration would exactly match the input reaister conficuration. Runs Were made until a proper setting of gain and rate feedback were obtained such that final position error was within one bit consistently for all inputs, from one bit up to large slew signals.

When a satisfactory cain and rate feedback settine was obtained a multi-channel Brush Recorder capable of speeds up to 250 mm per second was used to record (a) the comparator
output (error), (b) servo-amplifier output (control field voltage of the servomotor), and (c) tachometer d-c voltage. The latter was a measure of the motor speed throuch a manufacturer supplied correlation: 6.5 volts d-c per 1000 rpm . This correlation was checked by timing the revolutions of the encoder which was easily done because it ran much slower than the motor, and calculating the motor speed by multiplication of the gear ratio; the correlation was found to be accurate.

3.2 Results

The results obtained from tests are summarized below: 1. The servo system is velocity limited due to two limits: a. The comparator output is Iimited to .6 volts, rme. b. The amplifier saturates, putting out a maximum of 80 volts, rms for a .6 volt, rms input no matter how hich the amplifier cain potentiometer is set.
2. In the light of the velocity limit, the maximum motor speed is obtained with no rate feedback, in which case its maximum speed is 355 radians/second, corresponding to 197×10^{-3} radians/second for the system output shaft. 3. With no rate feedback, however, the system always coes into a limit cycle.
4. With rate feedback, only approximately one combination of amplifier cain and rate feedback gave satisfactory results of a minimum number of overshoots and no ereater than one bit static error. Changing either more than slightly
resulted in either a limit cycle or a system whose eain was too low to respond to a one b1t input sienal.
5. It was found that at least 7 volts, rms control field voltage was required to drive the motor, which corresponded to a minimum amplificetion of 350 , to respond to a one bit (. 02 volt, rms) input sienal.
6. Under static conditions if either the amplifier gain potentiometer or the rate feedback potentiometer were increased independently of the other a chatter or jitter developed. The rate feedback potentioneter was especially sensitive.
7. For the proper settings of gain and rate feedback resulting In a satisfactory response, the maximum motor speed (the velocity limit) was 137 radians/second, corresponding to 76×10^{-3} radians/second for the system output shaft.
8. There is a large anount of backlash in the PIC 1800:1 Speed Reducer evidenced by lone flat portions in the transients recorded by the Brush Recorder.
9. Finally, the Brush Recorder tapes show that the error never nulls out completely to zero, nor does the amplifier output, but for the satisfactory response case this electrical noise is not enough to cause the motor to jitter.

IV DERIVATION OF TRANSFER FUNCTIONS OF COMPONENTS
4.1 Introduction

In this section, the transfer functions of the system components briefly described in Section II will be derived, makine use of some of the observed data of Section III, for use in the mathematical analysis to follow.
4.2 Baldwin Encoder and Translator

As previously described, the function of the Baldwin optical shaft encoder is to convert the output shaft position to a 16 binary dieit number on a separate track for each digit simultaneously (i.e. parallel conversion), reading out in Gray binary code. In the mechanics of this device the read-out is performed by photocells activated by a pulsing licht passing through a coded disk attached to the shaft. It is this pulsing light which performs the function of a sampler which makes the system being studied a sampled data system. As previously mentioned, the sampling rate was specified as 25 samples per second in view of other aspects of the overall design.

The translator following the encoder has the basic function of translatine the Gray binary shaft position to a true binary number, but it has a by-product function which is very important from a servo analysis standpoint. This second function is that each channel of the translator performs a zero order hold or clamping action on the digit in its channel between sampling instants.

Thus, the overall function of the encoder-translator combination is to sample and clamp the output shaft position and feed it back to the comparator to \&et a direct measure of position error, essentially a unity feedback function. The combination can be represented as in Ficure 8.

Figure 8. Block Diagram Representation of Shaft Encoder and Translator Combination.

4.3 Norden Ketay Dieital Comparator

The basic function of the digital comparator is to form a voltace analof of the error sicnal by comparing two dicital numbers, the input si\&nal, and the translator output sicnal, and then transforming the difference into an a-c electrical voltage, the phase of which is determined by the sign of the difference. As mentioned in Section II, a true transformation of the difference is performed only when the difference is less than or equal to the binary number 32 (2^{5}). When the difference is greater than that, the $a-c$ voltage output is a constant level. Due to the fact that the error $1 s$ derived from a numerical difference the error sicnal produced is quantized, and each quanta, representine a binary one, has an rms value of approximately .018 volts. Ficure 9 is the dicital-to-voltace transformation characteristic of the comparator.

There is an additional scaling factor necessary to convert from binary numbers to radians, K_{e}, which 1 derived as follows:
binary number $1,\left(1^{\prime \prime} 6 i t^{\prime \prime}\right)=\frac{2 \pi}{2^{16}}=\frac{6.283}{65,536}=.968 \times 10^{-4}$ radians

$$
K_{e}=\frac{.018 \mathrm{rolts}}{.968 \times 10^{-4} \text { radians }}=186 \mathrm{volts} / \text { radian }
$$

The block diagram representation of the comparator is shown in Figure 10.

Figure 10. Block Diagram Representation of Norden Ketay Digital Comparator.

4.4 Servo Amplifier

Little need be said here as to the obvious function of the amplifier, but its saturation characteristics must be shown, so that its linear and nonlinear zones may be approximated for use in mathematical analysis.

As stated in Section III, it was determined that in the linear zone around zero error an amplification of at least 350 was required for the servo to respond to a one bit input sienal, and it was also found that even with rate feedback for stabilization the amplifier gain could not be set too much higher than this. Therefore, the amplifier gain characteristic was determined for this getting and is shown in Figure 11. As can be

seen, the amplifier transfer function can be divided into three zones:
(1) for input less than .2 volts, rms:

$$
K_{a}=350
$$

(2) for input equal to or greater then . 6 volts, rms:

$$
K_{a}=80 / .6=133.3
$$

(3) for inputs between . 2 and .6 volts, rms there is a transition zone where K_{a} is chancing between the above limits.

For some parts of the mathematical analysis the transition zone will be neglected, and the amplifier can be represented as in Figure 12.

Figure 12. Block Diagram Representation of Servo Amplifier.
4.5 Diehl Servomotor and Tachometer

In accordance with reference (3), a two-phase servomotor transfer function can be approximated as:
where:

$$
K G=\frac{K_{m}}{s\left(s \tau_{m}+1\right)}
$$

$$
\begin{array}{l|l}
K_{m}=\left|\frac{\partial \omega}{\partial V_{c}}\right|
\end{array} \left\lvert\, \begin{aligned}
& \omega=\text { speed, rads. } / \mathrm{sec} \\
& V_{c}=\text { motor control field voltage } \\
& J=\frac{J}{\partial T} \times\left(2.59 \times 10^{-3}\right)\left|\begin{array}{l}
\partial \omega
\end{array}\right| \begin{array}{l}
\left.\frac{J}{\partial \omega} \right\rvert\, \\
T=\text { torque moment of inertia, oz -in }{ }^{2}
\end{array}
\end{aligned}\right.
$$

Althouch in Figure 6 the torque versus speed curve is shown only for rated reference and control field voltage, the common assumptions were made that torque versus speed curves for other values of V_{c} are approximately parallel to the one Eiven, and the.t the slope of these curves can be approximated linearly so that torque versus speed can be assumed a constant. Thus, from Fieure 6:

$$
\left|\frac{\partial T}{\partial \omega}\right| \doteq \frac{5.5 \mathrm{oz}-\mathrm{in}}{3450 \mathrm{rpm}}=\frac{5.5 \text { oz-in }}{3450(2 \pi) / 60 \mathrm{rads} / \mathrm{sec}}
$$

Since this motor has to operate over full speed rance, this broad, end point slope was considered the best approximation.

Two phase servomotors are designed to have a linear relation between stall torque and control field voltace, and this was determined to be approximately true as shown in Figure 13. From this figure it is determined that:

$$
\left|\frac{\partial T}{\partial V_{c}}\right| \doteq \frac{3.2 \text { oz-in }}{68 \text { volts }}
$$

Therefore:

$$
K_{m}=\left|\frac{\partial \omega}{\partial V_{c}}\right|=\frac{\left|\frac{\partial T}{\partial V_{c}}\right|}{\left|\frac{\partial T}{\partial \omega}\right|} \doteq \frac{\frac{3.2}{68}}{\frac{5.5}{3450(2 \pi) / 60}}=3.08 \frac{\mathrm{rad} / \mathrm{sec}}{\text { volt }}
$$

For the detemination of the time constant, τ_{m}, the moment of inertia, J, consists of motor and connected tachometer inertia, J_{m}, Eiven in Ficure 6 , plus the load inertia transferred through the gear train. It was found that the Inertia of the Baldwin Encoder (the load) is $18.2 \mathrm{lb} .-\mathrm{in}$?

Transferring back through the gear train this becomes:

$$
\rho^{2} J_{L}=\frac{1}{(1800)^{2}}[(18.2)(16)] o z-i n^{2}
$$

As can be seen, because of the large gear ratio, the load contribution to J is small compared to J, so it was neglected. Therefore:

$$
\tau_{m}=\frac{J}{\left|\frac{\partial T}{\partial \omega}\right|} \times\left(2.59 \times 10^{-3}\right)=\frac{.18}{\frac{5.5}{3450(2 \pi) / 60} \times\left(2.59 \times 10^{-3}\right)=.0306 \mathrm{sec} . .}
$$

The tachometer transfer function is simply a scale factor, K_{T}, tines s. The motor-tachometer blocis diecren is shown in Figure 14.

Figure 14. Block Diagram Representation of Motor and Tachometer.

4.6 The Overall System

Summarizing and putting together the block diagrams of all the component parts, an overall system block diacram is arrived at. This system block diegram is shown in Figure 15 on the following pace.

Figure 15. Block Diaeram Representation of the Entire Servo System.

In Figure 15 symbols have been used rather than numerical values for convenience in analysis. For the sake of simplicity in analysis the inner loop can be reduced to a single biock, and thus the system reduces to that of Figure 16.

Figure 16. Single Loop Block Diagram of the System.

V MATHETLATICAL ANALYSIS OF SYSTEM AND COMPARISON WITH OBSERVED DATA

5.1 Introduction

In this section the mathematical analysis of the model servomechanism will be presented and a comparison will be made between the theoretical and observed results given in Section III with a discussion as to the reasons for differences. The basic analytical tools to be used in this analysis are the root locus of sampled data systems, the principles of which are found in references (4) and (5), and a Eraphic method for obtaining the transient response to a step input for a sampled data system which contains a zero order hold following the sampler developed in reference (5).
5.2 Root Locus Analysis for System Without Rate Feedback As the observed data of Section III shows, the system is velocity limited and further, the greatest limiting velocity is obtained with zero rate feedback. However, observation also showed that there is always a limit cycle in this case. Since the system being considered is second order, the reason for this instability is not immediately evident, but a root locus analysis in conjunction with another bit of observed data will reveal the reason.

Referring to Figure 16 , when $K_{T}=0$, in the lInear operatron zone (E less than .2 volts, rms), the direct transfer function, $G(s)$, reduces to:

$$
G(s)=\frac{K_{e} K_{a} K_{m} \rho}{s\left(\tau_{m} s+1\right)}=K_{e} K_{a} K_{m} \rho\left\{\frac{1 / \tau_{m}}{s\left(s+1 / \tau_{m}\right)}\right\}
$$

Putting in numerical values derived in Section IV:
$G(s)=(186)(550)(3.08) / 1800\left\{\frac{1.0306}{s(s+1 / .0306)}\right\}=111\left\{\frac{32.7}{s(s+32.7)}\right\}$
The characteristic equation, as a sampled data system is:

$$
1+111 \text { Z }\left[\left\{\frac{32.7}{S(S+32.7)}\right\}\left\{\frac{1-\epsilon^{-S T}}{S}\right\}\right]=0
$$

where Z means" the z transform of ". Taking the z transform, after first expanding by partial fractions, the result is, going back to symbols instead of numerical values again for the moment:

$$
G H(z)=K_{e} K_{a} K_{m} \rho\left\{\frac{\left[T / \tau_{m}-\left(1-\epsilon^{\left.-T / \tau_{m}\right)}\right]\left[z+\frac{\left\{\left(1-\epsilon^{-T / /_{m}}\right)-T / \tau_{m} \epsilon^{-T / \tau_{m}}\right\}}{\left\{T / \tau_{m}-\left(1-\epsilon^{-T / \tau_{m}}\right)\right\}}\right]\right.}{\frac{1}{\tau_{m}}(z-1)\left(z-\epsilon^{\left.-T / \tau_{m}\right)}\right.}\right\}
$$

Recalling that the sampling rate was specified as 25 samples per second, then the sampling period, $T=.04$ secs. Using this and other known numerics, leaving amplifier cain, however, as a. symbol, the above expression reduces to:

$$
G H(z)=\frac{.00563 K_{a}(z+.649)}{(z-1)(z-.27)}
$$

The root locus of $\mathrm{GH}(z)$ is show in Figure 17. The stability limit is where the root locus crosses the unity circle on the z-plane, and this occurs for an overall cain constant, consisting in this case of $.00563 \mathrm{~K}_{2}$, of 1.11. Thus,

it is found thet for stability, K_{a} has an upper bound of:

$$
K_{a}(\text { max })=\frac{1.11}{.00563}=197
$$

Since it was found necessary in the actual syotem to have K_{2} at least 350 to respond to a one bit sienal, as indicated in Section III, it is evident that rate feedback, or other compensation, must be used. Because of its simplicity, rate feedback was used.

5.3 Root Locus Analysis of Rate Feedback Damped System

Before proceeding with the analysis, it is necessary to show how the rate feedback constant, K_{T}, is determined as a numerical value. Referring acain to Figure 16 , the velocity constent of the plant 1s:

$$
\text { Plant Velocity Constant }=\frac{K_{a} K_{m}}{1+K_{a} K_{m} K_{T}} \frac{\mathrm{rads} / \mathrm{sec}}{\mathrm{volt}}
$$

For step inputs this velocity constent relates the output speed of the motor (not the output speed of the system) to the input error signal as a voltace. As mentioned in Section III, for the satisfactorily damped case, while the comparator was saturated, a multi-channel Brush Recorder recorded pertinent quantities, and the output shaft speed was measured. Thus, from observed data motor Ilmit velocity and error voltace are known quantities, and for this conaition the amplifier was in full saturation, so $K_{a}=133.3$, and K_{m} is known. Therefore, for this condition K_{T} can be determined. However, the question arises, what happens when the
comparator comes out of saturation and Ka gradually increases from 133.3 to 350 ? To answer this question corresponding points in time as the servo came into correspondence were taken, and the results are shown in Table I below.

Table I shows, then, that the product $K_{a} K_{m} K_{T}$ remains a constant, and that the plant time constant is changed, and the Plant Velocity Constant is reduced by the rate feedback, Which are well-known facts.

Therefore, for the satisfactory rate damped system, referring again to Figure 16, in the linear operation zone (E less than .2 volts, rms):

$$
G(s)=\frac{K_{e} K_{a} K_{m} \rho /\left(1+K_{a} K_{m} K_{T}\right)}{s\left[\frac{\tau_{m} s}{\left(1+K_{a} K_{m} K_{T}\right)}+1\right]}=\frac{K_{e} K_{a} K_{m} \rho}{\left(1+K_{a} K_{m} K_{T}\right)}\left\{\frac{\left(K_{a} K_{m} K_{T}+1\right) / \tau_{m}}{S\left[S+\left(K_{a} K_{m} K_{T}+1\right) / \tau_{m}\right)}\right\}
$$

Putting in numerical values, this becomes:

$$
G(s)=61.9\left\{\frac{58.8}{s(s+58.8)}\right\}
$$

Since this has the same form as the undernped $G(s)$ of paragraph 5.2, the plant as a. function of z has the same form, and results in:

$$
G H(z)=1.52\left\{\frac{(z+.471)}{(z-1)(z-.0952)}\right\}
$$

The root locus of $\mathrm{GH}(\mathrm{z})$ is shown in Figure 18, and the operating point for the above gain constant, is shown. Also show is the operatine point durine full saturation when $K_{2}=133.3$, and the z-plane cain constant is reduced from 1.52 to .58 . Thus is shown the fact that saturation can be recarded as a reduction in effective eain as stated by reference (6) and other authors.

An observed fact was that the amplifier eain could not be increased aopreciably without causine a linit cycle even with rate feedoack. The reason is clearly evident in Ficure 18, since in the linear zone, with $\mathrm{Ka}_{\mathrm{a}}=350$, the operating point is very close to the unity circle.
5.4 Transient Analysis of Rate Feeaback Damped System

In calculatine the transient response of this sempled data system for comparison with the observed transient, the method to be used is eraphic build-up of the transient response. The method is sucested in reference (5) and it takes advantace of the fact that, due to the zero-order hold properties of the translator followine the encoder, the error sienal can be considered composed of step functions delayed in time by multiples of the sampline period, and thus the transient
response can be readily computed using step function response end the superposition principle.

For the system under consideration, using the numerical values for $G(s)$ of Figure 16 calculated in subsection 5.3:

$$
C(s)=G(s) E(s)=61.9\left\{\frac{58.8}{s(s+58.8)}\right\} E(s)
$$

$E(s)$ at each sampling instant can be considered a delayed step function, the amplitude of which is the difference between the true error at this time and the true error at the previous sampling instant, thus:

$$
C(s)=61.9\left\{\frac{58.8}{s(s+58.8)}\right\}\left[\frac{A_{0}}{s}+\frac{\left(A_{1}-A_{0}\right) \epsilon^{-T s}}{s}+\cdots+\frac{\left(A_{n}-A_{n-1}\right) \epsilon^{-n T s}}{s}\right]
$$

Taking the inverse Laplace Transform, the time solution is:

$$
C(t)=61.9\left(t-\frac{1}{58.8}+\frac{1}{58.8} e^{-58.8 t}\right)\left[A_{0} u(t)+\cdots+\left(A_{n}-A_{n-1}\right) u(t-n T)\right]
$$

From the above the transient solution is eraphically built up, using the relation below to determine the amplitudes of the delayed steps:

$$
\begin{aligned}
A_{n}-A_{n-1}=|E|_{t=n T}-|E|_{t=(n-1) T} & =R-C(t)_{t=n T}-\left[R-C(t)_{t=(n-1) T}\right] \\
& =-C(t)_{t=n T}+C(t)_{t=(n-1) T}
\end{aligned}
$$

From the above equations the transient response for the Inner zone, that is for $K_{a}=350$, for an input step of 3.22×10^{-3} radians (. 6 volts, rms as a voltage) was determined
and is shown in Ficure 19. Note that it is unnecessary to consider larger step inputs here due to comparator saturation.

However, this does not tell the whole story, because Ka varies throuchout the region dependine upon the ingtantaneous value of E. Therefore, a second transient solution was calculated for the full mplifier saturation zone where $K_{a}=133.3$. The only difference in the time solution equation is the constant multiplier which is 23.6 in the full amplifier saturation case instead of 61.9. This transient is 2lso shown in Flgure 19.

The true transient taken from Brush Recorder tape is shown for comparison on FiEure 19, and as one would expect, it appears to fall somewhere between the fully saturated and unsaturated amplifier transients. Quite notable also 1 s the long flat portion which is the effect of the very laree eear train backlash.
5.5 Discussion of Analysis and Observed Results

For the most part, the mathematical anelysis presented a.grees reasonably well with the observed results of Section III. The most pronounced nonlinear effects observed, insofar as they effect the performance of the servomechanism, are the saturation, or limitine eifects of the comparator and the servo amplifier. These saturation effects were taken into consideration in the mathematical analysis and for that reason the analysis Eives reasonable explanations for the observed effects. In particular, the root locus analysis for the undamped system (subsection 5.2) shows that the limit cycle

was caused by an amplifier eain which put the operatine point outside the unity circle on the z-plane. This too hich amplifier eain was observed necessary, however, for the system to respond to a one bit sienel, and therefore, rate feedback or other compensation was a necessity.

The root locus analysis of the rate feedback damped case, (subsection 5.3), sheds lieht on the reason a very limited tolerance was permissible on the amplifier cain and rate feedback proportion. In the first place, the analysis shows that K_{a} and K_{T} are not independent, but directly affect both the plant time constant and the effective plant velocity constant. The root locus, Figure l8, shows clearly that K_{a} for the linear zone could not be increased very much without putting the operating point on or outside the unity circle. It is true, theoretically, that the rate feedback could be increased to produce more dampine, but actually this would probably make the system too slugeish to respond to a one bit sicnal. It must be recalled also that the rate feedback control was particularly sensitive to causine static chatter if set very hich (see subsection 3.2 , 9).

In the transient analysis, (subsection 5.4), boundary transient responses at the limits of amplifier values, (fully saturated, and unsaturated), show the extreme cases, and as Fieure 19 shows, the actual transient falls between them as is to be expected. Comparing, the rise times on Fieure 19, it is evident that the true transiont most closely follows the full amplifier saturation curve in this region, which is
reasonable.
Aside from the saturation effects, the most noticeable observed nonlinearity was the laree backlash, shown quite clearly in Fieure 19. However, the mathematical analysis, although not taking it into consideration, has eiven reasonable explanations for limit cycles observed. Since limit cycles are the most pronounced effect of large backlash, it seems that backlash does not affect the system performance in this way; this is borne out by the transient where, althouch there is a large flat portion due to backlash, there is no limit cycle.

Chestnut and Nayer, in reference (6), conclude that backlash tendency to produce limit cycles can be ereatly reduced or elimineted by heving as much of the total inertia as possible located in the load, which is certainly the case here where:

$$
\frac{J_{m}}{J_{L}}=\frac{0.180 z-i n^{2}}{(18.2)(16) 0 z-i n^{2}}
$$

The transient of Ficure 19 exhibits enother interesting peculiarity. Note that there is a slicht hump before the effect of backlash takes hold; this does not eenerally occur. in continuous systems. It is the author's opinion that the answer lies in the sampling and zero order hold data reconstruction with its quantization and inherent time deley. Because of this the motor is not beine controlled by the true instantaneous error of the system which is continuous, but by
approximation composed of discrete steps. Thus, the motor does not come to a smooth stop and then reverse direction as In a continuous system. If this were the case there would be no hump but just a constant error while the motor is takine up the backlash. Instead, the motor reversal tends to be jerky, as a function of the quantization, allowing the hump shown to occur.

Again, looking at Figure 19, it appears thet the large amount of backlash tends to smooth out the response, since there is only a one-sided overshoot. By the time the motor has taken up the backlash, it is running at a constant, relatively slow speed, corresponding to an error of only about 1×10^{-3} radians, and then merely drives into corresgondence without additional overshoot.

All the other observed effects of subsection 3.2 are jitter effects. R. L. Hovious, in reference (7) has studied several of the contributine factors in a 60 cycle a-c servo, which is the type of servo being studied here. Among the most notable jitter causing factors are eranularity and quantizing, particularly effective in a dicital system such as this one, amplifier pick-up, at hich eain especially, vibrator noise in chopper amplifiers, especially at hieh eain (this latter probably accounts for the rate feedback potentiometer being especially sensitive to causing jitter), and d-c unbalance between halves of the purh-pull output stace of the amplifier.

VI dUAL MODING FOR FAST RESFONSE TO LARGE STEP INfUTS

6.1 Introduction

In this section the problem of improvine the time of response of the servomechanism for laree step inputs which saturate the system is studied.

It was shown in the last section that rate feedback may be used to obtain a stable system. However, it is the very nature of rate feedback to decrease the velocity constant of the system, and thus, because the system is velocity limited, the maximum velocity attained is lower than that attained without rate feedbaciz. Therefore it will inherently take loner for the system to reach correspondence when the input is a lare step. By virtue of the fact that the system under study eoes into full saturation for all inputs ereater than 3.22×10^{-3} radians, this is a serious disadvantage.

It is the opinion of the author thet the simplest and most loeical approach to overcoming this disadvantace is dual modinc? A method was found whereby the servo is made to min with zero rate feedbaci, and thus maximum possible soeed, whenever the true error is very much creater than 3.22×10^{-3} radions. When the true error is reduced to approximately fifty per cent ereater than 3.22×10^{-3} radians,
${ }^{I}$ It would have been possible to try acceleration feedback which mieht have stabilized the system and still allow the motor to run at top speed, but it is felt that, in this particuler case, dual-modine offers a simpler aporoach from an implementation viewpoint, as will be clear later.
rate feedback is switched in and the system drives into correspondence.
6.2 Phase Plane Analysis of a Continuous Data Approximation of the Rate Feedback Damped System

When one speaks of a dual mode servomechanism, he refers to a servomechanism, the performance of which cannot be described by a single differential equation throughout its range of operation. Instead, its performance can be roukhly broken up into two reEions, with a differential equation applicable to each recion. These reelons are so chosen that within them the system performance can be described by a Iinear differential equation. For this reason, such a system is often called a piece-vise linear system.

The simplest method of analyzing dual mode operation for a second-order servo is on the phase plane. However, phase plane methods are directly applicable only for continuous data systems. On the other hand, to date very little has been accomplished in working out analytic methods for hending nonlinear sampled data systems, and therefore the author hes chosen to approximate the system under study by a continuous data system and to compare the phase trajectory obtained with an actual system trajectory from observed data.

In Fieure 20 is shown a block diacram of a continuous data system with the same plant as the rate feedback danped system of subsections 5.3 and 5.4.

Figure 20. Continuous Data Approximation of the Stable Rate Feedback Damped System

From Figure 20:

$$
\begin{aligned}
\frac{C}{R} & =\frac{\frac{K k k(58.8)}{s(s+58.8)}}{1+\frac{K e k(58.8)}{s(s+58.8)}}
\end{aligned}=\frac{K_{e} k(58.8)}{s^{2}+58.8 s+K_{e} k(58.8)},
$$

$R_{s}{ }^{2}+58.8 R s+K_{e k}(58.8) R-\left[E s^{2}+58.8 E s+K_{e} k(58.8) E\right]=\operatorname{Ke} k(58.8) R$ Considering the Laplace variable as a differential operator:

$$
\ddot{R}+58.8 \dot{R}=\ddot{E}+58.8 \dot{E}+K_{e} k(58.8) E
$$

When R, the Input, is a step function:

$$
\ddot{E}+58.8 \dot{E}+\operatorname{Ke}_{e}(58.8) E=0
$$

Now, manipulating into the proper for for use of the isocline method (8):

$$
\begin{aligned}
\frac{\ddot{E}}{\dot{E}}=N & =-58.8-\operatorname{kek}(58.8) \frac{E}{\dot{E}} \\
\frac{\dot{E}}{E} & =-\frac{\operatorname{Kek}(58.8)}{N+58.8}
\end{aligned}
$$

The last equation is the general isocline equation for
the system. The constant in the numerator has different values, dependine upon the maenitude of K_{a}, which, in turn, is dependent upon the macnitude of the error. Considerine the amplifier saturation characteristics, as in subsection 4.4:
(1) When the error is less then 1.075×10^{-3} radiens

$$
\begin{aligned}
& \left(.2 \text { volts, rms), } K_{a}=350\right. \text {, and: } \\
& \qquad \frac{\dot{E}}{E}=\frac{-61.9(58.8)}{N+58.8}=\frac{-3640}{N+58.8}
\end{aligned}
$$

Numerical values for isoclines in this reqion are tabulated in Table II.
(2) When both the amplifier and the comparator are in full saturation, $K_{a}=133.3$, and no matter what the value of the true error, the plant sees only a constant error of 3.22×10^{-3} radians (. 6 volts, rms), and:
$\dot{E}=\frac{23.6(58.8) E_{\text {const. }}}{N+58.8}=\frac{1385\left(\pm 3.22 \times 10^{-3}\right)}{N+58.8}=\frac{ \pm 4.46}{N+58.8}$

In this recion the isoclines are parallel to the E axis; numerical values are tabulated in Table III.

F1çure 2l, the phase plane, was constructed from Taibles II and III. Note that there is a transition reeion between $\pm 3.22 \times 10^{-3}$ and $\pm 1.075 \times 10^{-3}$ radians, where the isoclines are continually chaneine direction instead of linear because here amplifier eain is continually chancing. Note also that for Ereater figure clarity, the \dot{E} axis, and the corresponding
Table II

Numerical Values of 1 soclines in Linear Region $E<1.045 \times 10^{-3}$ radians

N	$\dot{E} / E=-3640 / N+58.8$
+1761.2	-2.0
+305.2	-10.0
+123.2	-20.0
+32.2	-40.0
-0.0	-61.9
-5.0	-67.7
-10.0	-74.6
-20.0	-93.9
-25.0	-107.7
-30.0	-126.4
-40.0	
-58.8	
-78.8	
-98.8	
-118.8	
-218.8	
-422.8	
-1878.8	

Table III
Numerical Values of 1 soclines in fully Saturated Region

values of N have been scaled down by 10 in Figure 21, and the isoclines themselves have not been shown.

A phase trajectory for any step input laree enouch to push the motor into its velocity limit is shown, together with an actual trajectory derived from Brush Recorder Data.

It is notable that the continuous data trajectory is not too bad an approximation of the true sampled data trajectory. It should be kept in mind that for simplicity's sake the theoretical analysis has not considered the great amount of backlash present, which can be seen quite clearly in the true trajectory. There is a peculiar slight overshoot in the true trajectory before the constant error flat portion typical of backlash; however, this agrees with the transient shown in Figure 19. Note also that the two trajectories are very close toeether in the early portions. Of course; there is a ereater overshoot in the true trajectory, but this is a function of the sampling where the motor does not see the true error but a staircase approximation with its inherent time delay, causine greater overshoot.
6.3 Phase Plane Analysis of Dual Mode System

It seems reasonaile that usine the continuous data approximation of the real system, a dual modine arrangement can be arrived at.

As stated in Section III, it was observed that without rate feedback a maximum velocity of $197 \times 10^{-3} \mathrm{radians} / \mathrm{sec}$ is attained, and with the proper amount of rate feedback a maximum velocity of $76 \times 10^{-3} \mathrm{radians} / \mathrm{sec}$ is ettained. Thus,
when switching in the rate feedback a sudden, large deceleration is applied. Considerine the narrowness of the unsaturatea zone in FiEure 2l, it is cuite evident that the rate feedback woula heve to be switched in before the error is reduced to $\pm 3.22 \times 10^{-3}$ radians to allow the system sufficient time to decelerate a ereat deal before comine out of saturation. For practical reasons, to be stated later, it was found very convenient to cause the servo to switch modes When the error is $\pm 4.73 \times 10^{-3}$ radians.

Ficure 22 is another phase plane plot for the continuous data approximation of the stable rate feedback damped system, showine a trajectory for initial conditions of $E=+4.73 \times 10^{-3}$ radians and $\dot{E}=-197 \times 10^{-\xi}$ radians/second. Note again that for clarlty, the \dot{E} axis and the correspondine values of N, have been scaled down by a factor of 20 in Ficure 22, and the isoclines are not shown.

In comparine theoretical trajectories of Fieure 21 with Figure 22 note that althouch in the dual mode case the servo comes out of comparator saturation (3.22×10^{-3} radians) with almost twice the velocity as previously, it still comes into correspondence with only one more slicht overshoot. This indicates the system has a ereat deal of natural, or inherent damping. This is not surprisine if the roots of the characteristic equation are examined. Foi this continuous data approximation of the sampled data system, in the linear region around the null, the characteristic equation is:

$$
s^{2}+58.8 s+3640=0
$$

				$\begin{gathered} \text { transerition } \\ \substack{\text { regeocon }} \end{gathered}$			
			-60				
			${ }_{40}{ }^{\text {E }}$	redians/sec	$\times 10^{3}$	0^{3}	
				-			
			-20				
	-	-1		2		4	5
						radians	$\times 10$
			-20				
			-				
			-40				
			-60				
			-100				
	\square		-120				
Figur	22. P	Prtion of					
Phase	Plane	with a	-140				
Traject	tory of t	the Duel					
	Continuc	dus Data	-660				
			-180	Switco	ching	-	
					Point	t	
\square			\|-200 $\left.\right\|^{\text {c }}$	$H W$	He	12	

In the transient, the sine wave resultine from the complex pair roots of this equation are damped by a factor of $e^{-29.4 t}$; thus, it is heavily damped.

With this in mind, it was felt that the dual mode arrancement would work in spite of the ereater overshoot of the true sampled data system, an effect of the sampline as mentioned previously. The actual system does exhibit this inherent danpine in both the transient and on the phase plane where there is a large, but only one-sided overshoot.

6.4 Dual Node Switching Device

Very often in desicnine a switching device for dual mode operation of a servo one could expect to run into ereat complication. However this was not the case in this instance. In fact, the desien was quite simple, as will be shown. The reason for this was basically that the system beine dualmoded is one employine diعital devices, in perticular, a diعital comparator. The Norden-Ketay Dicital Comparator employs transistor switches in lofical circuitry for performine the alcevraic addition of two binary numbers, as explained in Section II. It was found that parts of this same dieital circuitry could be used to activate the switching in, or switching out of rate feedback in the system, without interferine in 1ts primary comparison function.

As was shown in the last section, what is needed is a switchinc device that will hold rate feedback out of the system while the comparator is in its limit, and will put it into the system just before the comporator cones off its
limit. After studying the logic circuitry of that section of the comparator called "Locic Circuits" in Figure 4, tro particular points, referred to hereafter as points A_{1} and A_{2}, Were found which jointly could perform a decision function in the desired dual mode switchine device. For convenience In the discussion that follows the macnitudes of error signals will be used in their binery ecuivalent in the system. For example, an error of $\pm \overline{2} \times 2 \times 10^{-3}$ radians $i s$ equivalent to 25 , or 32 "bits".) Points Al and 42 have the followine voltace level characteristics in the comparator:

Table IVVoltake Levels of Dual Mode Switchine Circuit Decision Function.					
Points	System Input	Error >47 bits	Error $\leqslant 47$ bits		
A_{1}	Positive Step	-11	-11		
A_{2}	11	0	-11		
A_{1}	Negative Step	0	-11		
A_{2}	11	-11	-11		

Usine the voltaces in Table IV, a transistor switching circuit was designed as shown in Fi\&ure 23, with pertinent voltaee levels under various conaitions tabulated in Tables V and $V I$.

The four $2 N 344$ transistors used in this circuit are P N P type transistors. In order to understand the operation of the circuit it is well to keep the followine facts about trensistor switches in mind (9):

1. ino current (except a small leakace current) will flow in the collector unless current is introduced into the emitter.

Figure 23. Dual Mode Switching Circuit

Table Pertinent Voltage Negative Step Revels for		
Point	In puts	
	>47 bits	$E \leqslant 476 i t_{s}$
a_{1}	0	-11
a_{2}	-11	-11
σ_{1}	+0.5	-0.3
b_{2}	-0.3	-0.5
c_{1}	-0.35	-0.35
c_{2}	-2.2	-0.35
d	-0.2	+0.22
e	-0.02	variable

2. If the bese to enitter is back biased by more than .2 volts, the transistor is effectively an open circuit. For a P N P trensistor back biesine is achieved when the base is positive with respect to the emitter.
3. If the base to emitter is forward biased, the transistor conaucts heavily and is effectively a short circuit.

For example, consider a very laree positive step input to the servo. Referrine to Figure 23 and Table V, it can be seen that while the error is greater than 47 bits, V_{l} conducts but V_{2} does not. Because of this unbalance between V_{1} and V_{2}, a. neartive voltace appears at point d, which forwerd biases V_{4}, causine it to short the tachometor to Eround, and no rate feedback enters the servo system. Note, V_{3} aoes not conduct althouch its base to emitter is also fownard biased because its collector is positive with respect to its enitter and this is not the proper conduction polarity for a P N P transistor. This situation would be just reversed for a neqative step input when the tachometer voltace is necative; then V_{3} and not V_{4} would short out the tachometer. When the error is less than, or equal to 47 bits the unbelance between V_{1} and V_{2} is restored because both ecually conduct, since A1 and A2 are both -ll volts as shown in Table IV. Therefore, point d becomes positive, which beck biases V_{4} and V_{3}, the short to eround is opened, and rate feedback enters the system.

This switchine device worked as desiened, and the servomechanism operated successfully in the dual mode arraneement, for all sizes of input sienals.

Thus, in this instance, continuous data phese plane analysis eave a cood enoueh approximation of a sampled data syster to permit usine the technique of dual nodine to raise the saturation velocity of the system.

VII CONCLUSIONS

As stated in the Introduction, the purpose of this investigation was to analyze an existing dieital sampled data position servomechanism which is velocity limited, and, further, to find a means of raising the maximum velocity if possible.

From the analysis presented the following conclusions may be drawn:

1. The system studied is a Type l, second order diEital sampled data servo which has no resion of linear operation. The predominant nonlinearities are: (a) an error limit imposed by the physical construction of the dicital comparator; (b) servo amplifier saturation, (both of which cause the system to be saturated for all but very small input sienals); and (c) a laree amount of backlash in the 1800:1 eear train.
2. The system achieves its maximum velocity during saturation as a sincle loop, unity feedback system with no rate feedback, but in this condition it is unstable, resulting in a limit cycle. This ingtability is the result of an amplifier Eain which puts the system roots outside the unity circle, (stability limit), on the z-plane, but this particular amplifier ε ain is necessary for the servo to respond to a one bit input signal, such performance being reouired by the desien spocifications.
3. This velocity limited servo can be made stable for all step inputs of one bit or ereater by the addition of an
inner loop consisting of rate feedback arouna the motor and servo amplifier, but in this arrancement the maximum motor speed, or velocity limit, is reduced. Because of this lowered velocity limit, the time of response for all larce inputs which cause saturation is very lone.
4. In the stable, rate feedback danped arrancement this system has a great amount of inherent damping. For this reason, the large backlash in the gear train does not constitute an additional source of limit cycles.
5. In order to raise the maximum velocity a.ttained during saturation, dual mode operation proved feasible by neglecting the backlash, and using phase plane analysis with a continuous data approximation of the actual sampled data system. The successful use of this approximation was due principally to the ereat inherent damping present in the actual system as a result of the rate feedback.
6. A simple dual mode switching device can be designed for this diEital system using transistor switches by taking advantage of the existing logical circuitry in the digital comparator. By the use of this switching device the inner loop of the servomechenism is open circuited by large input signals, allowing the system to run at near maximum motor speed until the system position error is very small, at which time the switching device closes the inner loop, putting rate feedback damping into the system to brine it into correspondence without a limit cycle.

BIBLIOGRAPHY

1. Model A9SP16 9 inch Diameter 16-Digit Shaft Angle Analoe-to-Dieital Encoder". Industrial Products Division, Baldwin Piano Co., 1958.
2. "Norden Ketay Digital Comparator", Norden Ketay, Data Systems Division, 1958.
3. W. A. Stein and G. J. Thaler, "Evaluating the Effect of Nonlinearity in a 2-phase Servomotor"; Trans. AIEE, Applications and Industry, Jan. 1955.
4. J. R. Ragazzini and G. F. Franklin, Sampled Data Control Systems, McGraw-H111 Book Co., 1958.
5. G. J. Thaler, Lecture notes for a course in Sampled Data Control Systems, U.S. Naval Postgraduate School, 1959.
6. H. Chestnut and R. W. Mayer, Servomechanisms and Regulating System Desien, Vol. II, John Wiley \& Sons, 1955.
7. R. L. Hovious, "Jitter in Instrument Servos", Trans. AIEE, Applications and Industry, Jan. 1955.
8. R. C. H. Wheeler, Lecture notes for a course in Nonlinear Servomechanisms, U.S. Naval Posteraduate School, 1959.
9. General Electric Transistor Manual, 3rd Ed., General Electric Co., Semiconductor Products Division, 1958.

APPENDIX I
 GRAY BINARY CODE

In the true, or natural binary number system the normal sequence is shown in Figure 1 below, with the decimal equivalent of the true binary number to the right. As can be seen, often more than one binary digit changes at a time, such as in the decimal equivalent numbers $2,4,6,8$.

True Binary Decimal Equiv.

Figure 1. True Binary Counting Sequence

The Gray Binary Code, named for its inventor, Dr. Frank Grey, was devised in order to minimize serious reading error in digital equipment by allowing only one binary digit to change at a time. At the left in Figure 2 is the Gray Binary counting sequence, where this fact can be readily seen.

To convert the Gray Binary sequence to the true binary sequence, for each number in Gray Binary simply add the digits, starting from the most significant and working progressively toward the least significant as follows:

First: Carry the most significant digit unchanged. Second: Add the most significant digit to the second
most sienificent dicit, the result is the true binary second most significant digit. In this adaition $I+0=1$, and $1+1=0$.

Third: Take the result of the second step, (the true binary second most sienificant digit), and add it to the third most significant Gray binary digit, the result is the true binary third most significant digit, etc.

Figure 2. Comparison of Gray Binary Numbers and Their True Binary Equivalents

Referring to Figure 2, some examples of conversion follow, using an arrow sequence to sienify the addition steps above:

Gray binary:

True binary:

32768002135204
DUDLEY KNOX LIBRARY

